UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

UNITS, DIMENSION AND MEASUREMENT

• Measurement of large distance (Parallax Method)

$$D = \frac{b}{\theta}$$

Here

D = distance of the planet from the earth.

 θ = parallax angle.

b = distance between two place of observation

• Measurement of the size of a planet or a star.

$$\alpha = \frac{d}{D}$$

Here

D = distance of planet from the earth,

d = diameter of planet.

 α = angular diameter of planet.

• Measurement of mass

The gravitational force on object, of mass m, is called the weight of the object.

1 amu = 1.66 × 10-27 kg = 1u

• Estimation of Error

Suppose the values obtained in several measurement of physical quantity

are a1, a2, an . Their arithmetic mean is

$$\overline{a} = \frac{a_1 + a_2 + \dots + a_n}{n} = \frac{1}{n} \sum_{i=1}^{n} a_i$$

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

• Absolute Error - $\Delta a_1 = \overline{a} - a_1$ $\Delta a_2 = \overline{a} - a_2$ ------ $\Delta a_n = \overline{a} - a_n$

 $\Delta a_1, \Delta a_2 \dots, \Delta a_n$ called absolute error

- Average absolute error $\Delta a = \frac{|\Delta a_1| + |\Delta a_2| + \dots + |\Delta a_2|}{n}$
- Fractional Error

$$\delta a = \frac{\Delta a}{a}$$

• Percentage Error

$$\delta a\% = \frac{\Delta a}{a} \times 100\%$$

• Combination of Errors

(i) Addition : Z = A + B

Maximum Absolute Error = $\Delta A + \Delta B$

Maximum Relative Error=

$$\frac{\Delta A + \Delta B}{A + B}$$

Maximum Percentage Error =

$$\left(\frac{\Delta A + \Delta B}{A + B}\right) \times 100$$

(ii) Subtractions : Z = A - B

Maximum Absolute Error = $\Delta A + \Delta B$ Maximum Relative Error = $\frac{\Delta A + \Delta B}{A - B}$

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

Maximum Percentage Error = $(\Delta A + \Delta B) \sim 100$

$$\overline{A-B}$$
)×100

(iii) Multiplication $Z = A \times B$

Maximum Absolute error = $A\Delta B + B\Delta A$

Maximum Relative Error=

$$\frac{\Delta A}{A} + \frac{\Delta B}{B}$$

Maximum Percentage Error =

$$\left(\frac{\Delta A}{A} + \frac{\Delta B}{B}\right) \times 100$$

(iii) Division Z = A/B

Maximum Absolute error =

$$\frac{B\Delta A + A\Delta B}{B^2}$$

Maximum Relative Error =

$$Z = \frac{A}{B}$$
$$\frac{\Delta Z}{Z} = \frac{\Delta A}{A} + \frac{\Delta B}{B}$$

(iv) Power $Z = A^n$

Maximum Absolute Error : $n A^{n-1} \Delta A$

Maximum Relative Error

$$\frac{\Delta Z}{Z} = n \frac{\Delta A}{A}$$

Maximum Percentage Error=

$$n\frac{\Delta A}{A} \times 100$$

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

- Rule for determining number of significant figures
 - (i) All the non zero digits are significant

(ii) All the zeros between two non zero digits are significant no matter where the decimal point is it at all.

(iii) If the number is less then 1 then zeros on the right of decimal point but to the left of the first non - zero digit are not significant.

(iv) In a number without decimal point the zeros on the right side of the last non zero digit are not significant.

• Dimensions and Dimensional formulas.

(i) The expression of a physical quantity with appropriate powers of M, L, T, K, A etc is called the dimensional formula of that physical quantity.

(ii) The power of exponents of M, L, T, K, A are called dimensions of that quantity.

• Some important units of distance

1Å = 10–10m

1AU =1.496×1011m

1light year = 9.46×1015m

1par sec = 3.08×1016m

• Conversion of one System of units into another

$$\begin{split} n_2 &= n_1 \frac{u_1}{u_2} \\ n_2 &= n_1 \left(\frac{M_1}{M_2}\right)^a \left(\frac{L_1}{L_2}\right)^b \left(\frac{T_1}{T_2}\right)^c \end{split}$$

Units used : Every quantity must be expressed in its absolute units only

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

- Principle of homogeneity of dimensions: Equating the power of M,L,T on either side of the equation OR power of dimension either side must be same
- Quantities having same dimensions/ units

(i) Frequency, angular frequency, angular velocity, velocity gradient :

 $M^0 \ L^0 \ T^{\text{-}1}$

(ii) Work, Internal energy, P.E. , K.E., torque, moment of force : $M^1 L^2 T^{-2}$

(iii) Pressure, Stress, Young's modulus, Modulus of rigidity, Energy density :

 $M^{1} L^{-1} T^{-2}$

- (iv) Mass and Inertia : $M^1 L^0 T^0$
- (v) Momentum and Impulse : M¹ L¹ T⁻¹
- (vi) Acceleration, g, gravitational intensity : $M^0 L^1 T^{-2}$
- (vii) Thrust, Force, Weight, Energy radiant : $M^1 L^1 T^{-2}$
- (viii) Angular momentum and Planck's constant (h) : M¹ L² T⁻¹
- (ix) Surface tension, Surface energy (energy per unit area), force gradient, Spring constant : $M^{1}L^{0}T^{-2}$
- (x) Strain, Refractive index, relative density, angle, solid angle, distance
- gradient, relative permeability, relative permitivity,: $M^0 \: L^2 \: T^{\text{-}2}$
- (xi) Thermal capacity, gas constant, Boltzmann constant and entropy :

 $M^{1} L^{2} T^{-2} K^{-1}$

(xii) L/R, V(LC) and RC : M⁰ L⁰ T¹

here R : resistance; C : capacitance; L : inductance

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

MOTION IN ONE DIMENSION

• Distance

(i) It is the length of actual path traversed by a body during motion in a given interval of time

(ii) Distance is a scalar quantity

- (iii) Value of distance travelled by moving body can never be zero or negative.
- Displacement

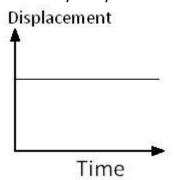
(i) Displacement of a body in a given time is defined as the change in the

position of the body in the particular direction during that time

- (ii) Displacement is vector quantity.
- (iii) The value of displacement can be zero or negative or positive

(iv) The value of displacement can never be greater than the distance travelled.

 Displacement-time graph of various types of motion of a body (i) For stationary body

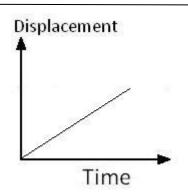


Slope of straight line (representing instantaneous velocity) is zero.

(ii) When body is moving with a constant velocity, or acceleration is zero

straight line inclined to time axis

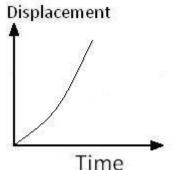
UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.



Greater is the slope of straight line higher is the velocity

(iii) When body is moving with a constant positive acceleration, the time-

displacement curve with bend upwards

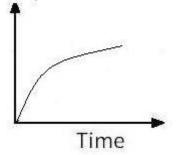


The slope of time-displacement curve increases with time or velocity is

increasing with time

(iv) When body is moving with a constant negative acceleration or constant

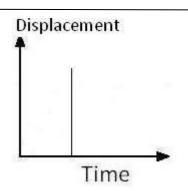
retardation, the time-displacement curve with bend downwards Displacement



The slope of time-displacement curve (i.e. instantaneous velocity) decreases with time.

(v) When a body is moving with infinite velocity, the time - displacement graph is parallel to displacement axis.

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

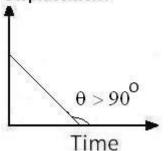


Such motion of a body is never possible

(vi) When body returns back towards the original point of reference while

moving with uniform negative velocity, the time displacement graph is an

oblique straight line making angle $\theta > 90^{\circ}$ Displacement

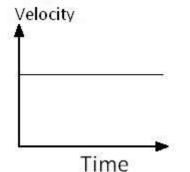


Displacement of the body decreases with time with respect to the reference point, till it becomes zero

Velocity - time graph o various types of motion of a body

(i) When a body is moving with a constant velocity, the velocity - time graph is

a straight line., parallel to time axis

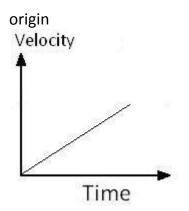


The slope of the graph, representing the instantaneous acceleration is zero

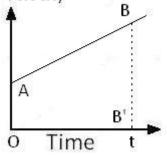
(ii) When a body is moving with a constant acceleration and its initial velocity

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

is zero, the velocity time graph is an oblique straight line, passing through



 (iii) When a body is moving with constant speed with a constant acceleration and its initial velocity is not zero, the velocity - time graph is an oblique straight line not passing through origin Velocity



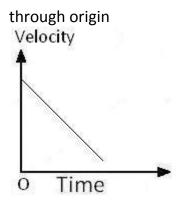
Here OA represents the initial velocity of the body

The area enclosed by the velocity-time graph with time axis represents the

distance travelled by the body

(iv) When a body is moving with a constant retardation and its initial velocity

is not zero, the velocity - time graph is an oblique straight line, not passing

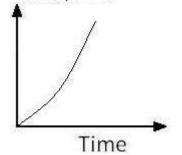


UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

The slope of the line is negative indicating retardation

(v) When a body is moving with increasing acceleration , the velocity - time

graph is a curve with bend upwards Velocity

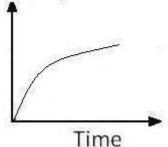


The slope of the graph increases with time. or instantaneous acceleration

increases with time

(vi) When a body is moving with decreasing acceleration, the velocity - time

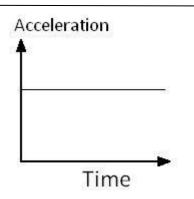
graph is a curve with bend downwards Velocity



The slope of velocity - time graph decreases with time. or instantaneous acceleration decreases with time

Acceleration - time graph of various types of motion of body
(i) When a body is moving with constant acceleration, the acceleration - time graph is a straight line, parallel to time axis

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

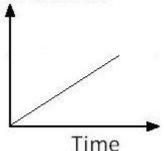


The area enclosed by acceleration - time graph for the body for the given time

gives change in velocity of the body for given time

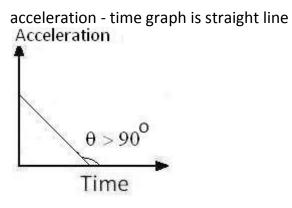
(ii) When a body is moving with constant increasing acceleration, the

acceleration - time graph is straight line Acceleration



The body is moving with positive acceleration

• When a body is moving with constant decreasing acceleration, the



The body is moving with negative acceleration and slope of straight line makes an angle $\theta > 90^\circ$ with time axis. Or slope of the line is negative

• IMPORTANT FORMULAS

(i)Equations of motion

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

u : initial velocity, v : final velocity , a : acceleration,

t : time period, S: displacement

$$S = ut + \frac{1}{2}at^{2}$$
$$v = u + at$$
$$v^{2} = u^{2} + 2as$$
$$S = \left(\frac{v+u}{2}\right)t$$
$$a = \frac{v-u}{t}$$

(ii) Free fall

h: height, g = gravitational acceleration , final velocity :v, t: time period

$$v = gt$$

$$v^2 = 2gh$$

(iii) Object thrown up

h: height, g = gravitational acceleration , u : initial velocity(negative) , t: time period

$$u = \sqrt{2gh}$$
$$h = \frac{u^2}{2g}$$

(iv) Distance travelled during last n sec while body is moving up = distance travelled during first n second of free fall

(v) Distance travelled in nth second

$$S_n = u + \frac{a}{2}(2n-1)$$

(vi) If time period for two different section is same and v1 and v2 are the

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

velocities for two sections then average velocity <v> is

$$\langle V \rangle = \frac{V_1 + V_2}{2}$$

(vii) If an object covers distance 'x' with constant speed of v1 and same distance with constant speed of v2then average speed of $\langle v \rangle$ is

$$=\frac{2V_{1}V_{2}}{V_{1}+V_{2}}$$

(viii) Starting from position of rest particle moves with constant accelerates + α reaches maximum velocity v_{max} then particle moves with constant decelerated β and become stationary . total time elapsed during this is t , then maximum velocity of particle is v_{max} is

$$V_{max} = \left(\frac{\alpha\beta}{\alpha+\beta}\right)t$$

Calculus

S: displacement , v : instantaneous velocity , a : acceleration

$$v = \frac{ds}{dt}$$
$$a = \frac{dV}{dt}$$

• if V_A is magnitude of velocity of object A and V_B is magnitude of velocity of object B with respect to stationary observer then

(i) if both objects are moving in same direction, velocity of A with respect to B, $V_{AB}=V_A-V_B$

(ii) If both objects are approaching, velocity of A with respect to B,

 $V_{AB} = V_A + V_B$

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

MOTION IN TWO AND THREE DIMENSIONS

• Vector

(i) If vector
$$\overrightarrow{A} = x\hat{i} + y\hat{j} + z\hat{k}$$
 then magnitude of vector is
 $|\overrightarrow{A}| = \sqrt{x^2 + y^2 + z^2}$
(ii) If Vector $\overrightarrow{A} = x_1\hat{i} + y_1\hat{j} + z_1\hat{k}$
and vector $\overrightarrow{B} = x_2\hat{i} + y_2\hat{j} + z_2\hat{k}$
(a) are equal then
 $x_1 = x_2$
 $y_1 = y_2$
 $z_1 = z_2$
(b) If $\overrightarrow{R} = \overrightarrow{A} + \overrightarrow{B}$ then
 $\overrightarrow{R} = (x_1 + x_2)\hat{i} + (y_1 + y_2)\hat{j} + (z_1 + z_2)\hat{k}$
(iii) If If $\overrightarrow{A} = x\hat{i} + y\hat{j} + z\hat{k}$ is vector then
(a) vector is making angle α with positive x-axis then

$$\cos\alpha = \frac{x}{\sqrt{x^2 + y^2 + z^2}} = \frac{x}{\left|\vec{A}\right|}$$

(b) Vector is making angle $\boldsymbol{\beta}$ with positive y-axis then

$$\cos\beta = \frac{y}{\sqrt{x^2 + y^2 + z^2}} = \frac{y}{|\vec{A}|}$$

(c) Vector makes angle of $\boldsymbol{\gamma}$ with positive z-axis then

$$\cos\gamma = \frac{z}{\sqrt{x^2 + y^2 + z^2}} = \frac{z}{|\vec{A}|}$$

(d) We can multiply and divide vector by scalar quantity but we can not divide vector by another vector

(d) $cos^2 \alpha + cos^2 \beta + cos^2 \gamma = 1$ (iv) If $\overrightarrow{A} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ is vector then unit vector **n** is

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

$$\hat{n} = \frac{\vec{A}}{\left|\vec{A}\right|}$$

• Addition of two vectors

(a) Only vectors of same nature can be added

(b) The addition of two like vectors \vec{A} and \vec{B} is a resultant vector \vec{R} where

$$R = (A^2 + B^2 + 2AB\cos\theta)^{\frac{1}{2}}$$

$$tan\beta = \frac{Bsin\theta}{A + Bsin\theta}$$

Here θ is the angle between vector A and vector \vec{B}

 β is the angle between resultant vector \vec{R} and vector \vec{A}

- (c) Vector addition is commutative
- (d) Vector addition is associative
- (e) $|\vec{R}|$ is maximum when $\theta = 0$ and minimum when $\theta = 180$
- Subtraction of two vectors
 - (i) Only vectors of same nature can be subtracted
 - (ii) The subtraction of two like vectors \vec{A} and \vec{B} is a resultant vector \vec{R} where

$$R = (A^2 + B^2 - 2AB\cos\theta)^{\frac{1}{2}}$$

$$tan\beta = \frac{Bsin\theta}{A - Bsin\theta}$$

Here θ is the angle between vector A and vector \vec{B}

 $\boldsymbol{\beta}$ is the angle between resultant vector \boldsymbol{R} and vector \boldsymbol{A}

(iii) Vector addition is NOT commutative (iv) Vector addition is NOT associative

(v) Magnitude of resultant of the vector subtraction is equal to that of vector addition if angle between \overrightarrow{A} and \overrightarrow{B} is 90°

• Dot product or scalar of two vectors \overrightarrow{A} and \overrightarrow{B} (i) \overrightarrow{A} . \overrightarrow{B} = ABcos θ , where θ is the angle between vector \overrightarrow{A} and vector \overrightarrow{B}

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

(ii) Dot product of two vector is scalar

- (iii) Dot product of two parallel vectors is maximum value \overrightarrow{A} . \overrightarrow{B} = AB
- (iv) Dot product of perpendicular vectors is zero in value \overrightarrow{A} . \overrightarrow{B} = 0

A unit vector is a unit less and dimensionless vector. Its magnitude is one and it represent direction only.

(v) Dot product of two vector is commutative

(vi) $\hat{\iota} \cdot \hat{\iota} = \hat{j} \cdot j = \hat{k} \cdot \hat{k} = 1$

(vii) $\hat{\imath} \cdot \hat{\jmath} = \hat{\jmath} \cdot \hat{k} = \hat{k} \cdot \hat{\imath} = 0$

(viii) In cartesian co-ordinate $\vec{A} \cdot \vec{B} = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) \cdot (B_x \hat{i} + B_y \hat{j} + B_z \hat{k})$ $\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$

• Cross product or vector product of two vectors \hat{A} and \hat{B}

(i)
$$\vec{A} \times \vec{B} = \vec{C} = ABsin \hat{n}$$
,

Here θ is the angle between vector \hat{A} and B, \hat{n} is the unit vector of resultant vector \vec{C}

Direction of \vec{C} can be determined by right hand screw rule.

(ii) Magnitude of the cross product of two vector is equal to

(a) Twice the area of a triangle whose two sides are represented by two vectors.

(b) Area of parallelogram whose two sides represented by two vectors.

(iii) Cross product of two parallel vectors is zero.

(iv) Cross product of two perpendicular vector is maximum.

(v) Cross product of two vectors is ant commutative i.e $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$

(vi) Cross product of vectors is distributive.

(vii) For cross product

$$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$$

(a) $\hat{\iota} \times \hat{j} = \hat{k}$ and $\hat{j} \times \iota = -\hat{k}$

www.spiroacademy.com

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

- (b) $\hat{j} \times \hat{k} = \hat{i}$ and $\hat{k} \times \hat{j} = -\hat{i}$ (c) $\hat{k} \times \hat{i} = \hat{j}$ and $\hat{i} \times \hat{k} = -\hat{i}$
- (viii) In Cartesian co-ordinates

$$\vec{A} \times \vec{B} = (A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}) \times (B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k})$$
$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{\jmath} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

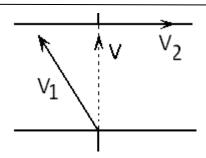
$$\vec{A} \times \vec{B} = (A_y B_z - A_z B_y)\hat{\imath} - (A_x B_z - A_z B_x)\hat{\jmath} + (A_x B_y - A_y B_y)\hat{k}$$

- Tensors: Those physical quantities which have no specified direction but have different values in different directions are called tensors.
 for example: Moment of inertia, stress, strain, density, refractive index, electrical conductivity etc.. Which are normally scalar but in anisotropic medium they assume different values in different directions so becomes tensors.
- When a boat tends to cross a river of width along a shortest path
 It should be rowed upstream making angle θ with the perpendicular direction
 of the river flow
 so that resultant velocity *v* of , velocity of boat *v*₁ and velocity of flow of

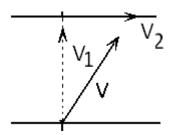
so that resultant velocity \vec{v} of , velocity of boat \vec{v}_1 and velocity of flow of river \vec{v}_2 may act perpendicular to the direction of river flow. in this case

$$\sin\theta = \frac{v_2}{v_1}$$
$$v = \sqrt{v_1^2 - v_2^2}$$

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.



• When a boat tends to cross a river in shortest time



The boat should go along the direction, perpendicular to the direction of river flow. then the boat will be going along the direction of resultant velocity \vec{v} of velocity of boat $\vec{v_1}$ and velocity of flow of river $\vec{v_2}$. If \vec{v} making an angle θ with the direction of $\vec{v_1}$, If S is the width of river and time t is time of crossing then

$$tan\theta = \frac{v_2}{v_1}$$
$$v = \sqrt{v_1^2 - v_2^2}$$
$$t = \frac{S}{v_1}$$

Relative velocity

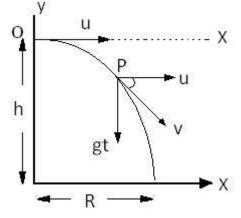
If \vec{V}_{AO} is velocity vector of object A with respect to observer O If \vec{V}_{BO} is velocity of object B with respect to observer O IF \vec{V}_{AB} is the velocity of A with respect to B then

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

 $\vec{V}_{AB} = \vec{V}_{AO} - \vec{V}_{BO} \text{ OR}$ $\vec{V}_{AB} = \vec{V}_{AO} + \vec{V}_{OB} \text{ (as } - \vec{V}_{BO} = \vec{V}_{OB} \text{)}$

• Projectile projected with initial velocity u

A) Horizontal projection from a height h angle of projection is zero



(i) Equation for path y =

$$y = \frac{1}{2} \frac{gx^2}{u^2}$$

(ii) Velocity of projectile at any instant t is v =

$$v = \sqrt{u^2 - g^2 t^2}$$

(iii) Direction of velocity \mathbf{v} with the horizontal =

$$\beta = \tan^{-1}\left(\frac{gt}{u}\right)$$

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

(iv) Time of flight T =

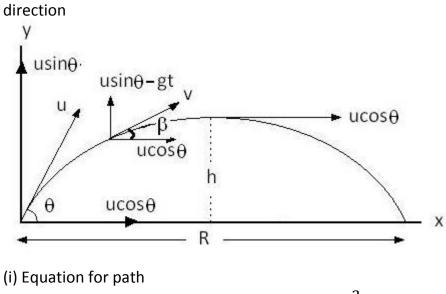
$$T = \sqrt{\frac{2h}{g}}$$

(v) Horizontal Range R =

$$R = u \sqrt{\frac{2h}{g}}$$

(vi) Maximum Height H = h

B) Angular projection of projectile making an angle $\boldsymbol{\theta}$ with the horizontal



$$y = x tan\theta - \frac{gx^2}{2(ucos\theta)^2}$$

(ii) Velocity of projectile at any instant t is

$$v = \sqrt{u^2 + g^2 t^2 - 2ugtsin\theta}$$

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

(iii) Direction of velocity **v** with the horizontal =

$$\beta = tan^{-1} \left(tan\theta - \frac{gt}{ucos\theta} \right)$$

(iv) Time of flight T =

$$T = \frac{2usin\theta}{g}$$

(v) Horizontal Range R =

$$R = \frac{u^2 \sin 2\theta}{g}$$

(vi) Maximum Height H =

$$H = \frac{u^2 \sin^2 \theta}{2g}$$

(vii) At highest point of projectile path, the velocity and acceleration are perpendicular to each other.

(viii) At highest point of projectile motion, the angular momentum of projectile is

L = momentum of projectile × maximum height

$$L = m \, u \, \cos\theta \times \frac{u^2 \sin^2\theta}{2g}$$

(ix) The particle returns to the ground at the same angle and with the same speed with which it was projected.

(x) if θ_1 and θ_2 are the angle of projection have same range then

$$\theta_1 + \theta_2 = \pi / 2$$

C) Relation between Maximum height and Range

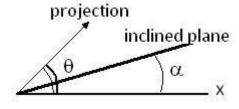
www.spiroacademy.com

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

 $4H = R \tan\theta$

D) Projectile along the inclined plane α is angle of inclination with horizontal, θ

is the angle of projection with horizontal



(i) Range of projectile along the inclined plane is =

$$R' = \frac{u^2}{g\cos^2\alpha} [\sin(2\theta - \alpha) - \sin\alpha]$$

(ii) Time of flight on an inclined plane

$$T' = \frac{2usin(\theta - \alpha)}{g}$$

(iii) The angle at which the horizontal range on the inclined plane becomes maximum is given by

$$\theta = \frac{\pi}{4} + \frac{\alpha}{2}$$

(iv) Maximum range on inclined plane is

$$R'_{max} = \frac{u^2}{g(1+\sin\alpha)}$$

Centripetal force

(i) The centripetal force does not increases the kinetic energy and angular momentum of the particle moving in circular path, hence work done is zero (ii) When body moves with constant angular velocity, then its acceleration always acts perpendicular to the velocity. Acceleration is towards the centre of the circle along which body is moving it is called centripetal acceleration. Whose magnitude is given by

www.spiroacademy.com

UNITS, DIMENSION AND MEASUREMENT, MOTION IN ONE, TWO AND THREE DIMENSION.

$$a_c = \frac{v^2}{r} = r\omega^2$$

(iii) Force required to keep the body in circular path with constant angular velocity is centripetal force and is given by

 $F = \frac{mv^2}{r} = mr\omega^2$